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A semiempirical ansatz to compute anharmonic contributions to the free energy neglected in quasiharmonic
calculations is introduced. A parametrized temperature-dependent modification of the vibrational density of
states designed to be used directly with the quasiharmonic free-energy expression is proposed. An approximate
relationship between the modified frequencies and the renormalized frequencies is developed. This parametri-
zation is shown to produce the correct low and high temperature behavior of the anharmonic free energy and
other thermodynamics properties. It is shown that the thermodynamics properties of �- and �-Mg2SiO4 �for-
sterite and wadsleyite� and MgO �periclase� improve considerably after inclusion of anharmonic effects. An-
harmonicity is shown to have a significant effect on the phase boundary of the forsterite to wadsleyite trans-
formation. Inclusion of anharmonic effects can reconcile discrepancies between the measurements of the
Clapeyron slope of this transition and the values predicted by quasiharmonic calculations.
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I. INTRODUCTION

The quasiharmonic approximation �QHA� �Ref. 1� in con-
junction with first-principles vibrational density of states2 has
been successfully and widely used to compute thermody-
namics properties of materials by first principles.3 In the
QHA, intrinsic temperature �anharmonic� effects caused by
phonon-phonon interaction are neglected. In the most com-
monly used version of this approximation, the statically con-
strained QHA,4 temperature effects on the crystal structure
and on phonon frequencies are accounted for through extrin-
sic volumetric effects only. Because intrinsic temperature ef-
fects increase with temperature, the QHA becomes inad-
equate beyond a certain temperature located between the
Debye temperature, �D, and the melting temperature, TM.5–12

The lower the pressure the more visible this effect is. For
example, at 0 GPa the thermal expansion coefficient of MgO
�Refs. 3 and 10� deviates strongly from experimental data
above 1000 K. Anharmonicity can be computed directly by
first principles and phonon lifetime and linewidth for indi-
vidual modes have already been carried out.13,14 However,
calculation of the anharmonic free energy requires computa-
tion of phonon-phonon interaction for all modes sampled in
the Brillouin zone and this remains a daunting task.

Several parametrized approximations to treat anharmonic
effects have been proposed.15–20 Usually, the anharmonic
correction to the quasiharmonic free energy, Fanh�V ,T�, is
written as an expansion in powers of T at high temp-
eratures.15,16,18 According to perturbation theory, the lowest
order term is quadratic in T,15 i.e., Fanh�V ,T�=

3nkB

2 b�V�T2.
This expression is valid only in the high-temperature limit. It
produces small but unphysical results at low temperatures
such as a linear anharmonic heat capacity. Furthermore, the
parameter b�V� is volume sensitive since anharmonicity de-
creases rapidly with pressure. Unphysical low temperature
results and the difficult determination of the volume depen-
dence of b, usually achieved through molecular dynamics
�MD� simulations,20 limits the application of this method.
Anharmonic effects can also be accounted for by using the

measured or computed temperature-dependent frequencies,
i.e., the self-consistent renormalized phonon frequencies,
into the quasiharmonic formula of the entropy but not for
other thermodynamics functions like the Helmholtz free
energy.16,17,21 This has been accomplished by combining
Debye-type models16,18 and experimentally measured
temperature-dependent frequencies. Nevertheless, replace-
ment of some form of temperature dependent frequencies
directly into the free-energy formula has also been done as a
form of parametrization.19,20,22,23 All these methods introduce
inevitably volume-sensitive parameters or require explicit
knowledge of the renormalized frequencies, none of which
are easy to obtain at high pressures and temperatures.

Although anharmonicity is naturally included in MD
simulations,20 it is not so straightforward to extract this in-
formation. Although phonon density of states can in principle
be obtained from MD, the limited number of atoms possible
in first-principles simulations limits the number of wave
numbers �q vectors� that can be sampled. This limitation can
be overcome by performing force field type simulations20,24

which can handle considerably larger numbers of atoms.
However, this is a laborious procedure whose outcome is not
as reliable as that of a purely but prohibitively costly first-
principles approach. In contrast, phonon calculations based
on density-functional perturbation theory can sample as
many wave numbers as necessary with the effort scaling lin-
early with number of q vectors. The accuracy of the final
phonon density of states can easily be checked against wave
number samplings used in the computation of force constants
and of the phonon density of states and it is not a problem to
increase either if necessary. For instance, the thermodynam-
ics properties of MgO derived from first-principles MD �64
atoms� at room temperature plus corrections for quantum
effects using a Debye-type model,24 are still not as good as
those derived by first-principles QHA calculations10 equiva-
lent to an MD simulation including 3456 atoms. It is there-
fore desirable to use QHA results as a starting point and find
an effective and easy approach to augment the QHA free
energy with an anharmonic contribution to extend the tem-

PHYSICAL REVIEW B 79, 104304 �2009�

1098-0121/2009/79�10�/104304�12� ©2009 The American Physical Society104304-1

http://dx.doi.org/10.1103/PhysRevB.79.104304


perature regime of applicability of these calculations.
In this paper we introduce a semiempirical approach that

builds on quasiharmonic free-energy calculations to obtain
the anharmonic contribution to the free energy. The promi-
nent advantage of this approach is that a single volume and
temperature-independent parameter, c, is involved, which
makes this method easily applicable. This method produces
the correct low and high-temperature anharmonic behavior
and reduces to the QHA when c=0. We show that the ther-
modynamics properties of �- and �-Mg2SiO4 �forsterite and
wadsleyite� improve considerably after inclusion of anhar-
monic effects. We also show that anharmonic effects increase
dramatically the Clapeyron slope �CS� of the phase transfor-
mation between forsterite and wadsleyite. This improves the
agreement between the predicted CS and those obtained by
experiments. The thermodynamics properties of MgO �peri-
clase� also show noticeable changes at relevant mantle con-
ditions.

II. CALCULATION DETAILS

The complete quasiharmonic calculations16 of periclase,
forsterite, and iron free wadsleyite upon which the current
calculations are based have been published earlier.3,25–28

These were plane-wave pseudopotential calculations whose
details have been extensively discussed in those papers. The
pseudopotential for magnesium was generated by the method
of von Barth and Car,3 while those for oxygen and silicon
were generated by the method of Troullier and Martins.29

The plane-wave cutoff energy is 70 Ry. Brillouin zone sum-
mations over electronic states were performed over 4�4
�4 �10 points�, 4�2�4 �16 points�, and 4�4�4 �17
points� k mesh with �1/2,1/2,1/2� shift from original for peri-
clase, forsterite, and wadsleyite, respectively. The structures
were well optimized using variable cell shape molecular
dynamics.30 Dynamical matrices were computed on 4�4
�4, 2�2�2, and 2�2�2 q mesh using density-functional
perturbation theory �DFPT�2 and then interpolated in a regu-
lar 12�12�12, 12�12�12, and 9�9�9 q mesh to ob-
tain the vibrational density of state for periclase, forsterite,
and wadsleyite.

III. ANSATZ

The quasiharmonic free energy is expressed as

FH�V,T� = U0�V� +
1

2�
q,j

��q,j�V�

+ kBT�
q,j

ln�1 − exp�− ��q,j�V�/kBT�� . �1�

U0�V� is the internal static energy obtained by a first-
principles variable cell shape type structural optimization un-
der hydrostatic pressure. The second and third terms are the
zero-point �FH

zp� and thermal energies �FH
th�, respectively. In

the statically constrained QHA, the crystal structure and pho-
non frequencies are unique functions of the volume.4 Tem-
perature effects on these quantities are accounted for through
volumetric effects only. The intrinsic temperature depen-

dence, i.e., anharmonic effects caused by phonon-phonon in-
teractions, is neglected. For a recent discussion of some con-
sequences of this approximation see Ref. 4.

The fully anharmonic free energy can be separated as

FA�V,T� = FH�V,T� + Fanh�V,T� , �2�

where Fanh�V ,T� is the anharmonic correction to the quasi-
harmonic free energy, FH�V ,T�. As argued by Falk,31

Wallace,16 and demonstrated by Hui and Allen,17 it is pos-
sible to compute exactly the anharmonic entropy, SA, if one
replaces the harmonic frequencies, �q,j�V�, by the renormal-
ized temperature-dependent frequencies, �q,j

S �V ,T�, in the
harmonic formula, SH=−��FH /�T� �V:

SA�V,T� = − kB�
q,j
	ln�1 − exp�− xq,j

S �� + xq,j
exp�− xq,j

S �
1 − exp�− xq,j

S �
 ,

�3�

where xq,j
S =

��q,j
S �V,T�
kBT . This substitution is not valid for any

other thermodynamics function. Although progress has been
made in first-principles computations of individual renormal-
ized phonon frequencies,13,14 it is still a daunting task to
renormalize the entire vibrational spectrum. Here we intro-
duce an ansatz that captures the effect of anharmonicity on
the free energy and permits computations of anharmonic
thermodynamics properties directly from the free energy. It
relies on the definition of a modified temperature-dependent
vibrational spectrum, �q,j

F , that reproduces the anharmonic
free energy when used directly in Eq. �1�. These frequencies
must reproduce the correct anharmonic behavior, i.e., anhar-
monicity should increase with temperature at constant pres-
sure, and decrease with pressure at constant temperature. An
approximate relationship between the modified frequencies,
�q,j

F , and the renormalized frequencies, �q,j
S , will be derived

below in the high temperature limit.
The temperature dependence of �q,j

F is implicitly ex-
pressed as

�q,j
F �V,T� = ��V�� , �4�

where V� depends on temperature for a fixed volume V:

V� = V	1 − c
�V − V0�

V0

 . �5�

V and V0 are the predicted quasiharmonic volumes at high
and zero temperature, respectively, both at the same quasi-
harmonic pressure, P�V ,T�. c is a constant to be determined
empirically by comparing, for instance, experimental data on
the thermal expansivity, �, to predictions of quasiharmonic-
like calculations using the modified spectrum of Eq. �4�. This
ansatz is suggested by the fact that in the QHA phonon fre-
quencies depend on volume only. Therefore, if the predicted
quasiharmonic volumes differ from the experimental vol-
umes, the correction of the frequencies should be expressed
through a volume-dependent term. Equation �5� expresses
this idea in a more general form by introducing the constant
c. More general parametrizations of V�, such as a power
series in �V−V0�, or parametrizations depending explicitly on
lattice parameters are also viable and may be useful. Notice
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that the expected anharmonic behavior, which increases with
temperature at constant pressure and decreases with pressure
at constant temperature, is embodied in Eq. �5�: V� tends to V
at low temperatures and constant pressure or at high pres-
sures and constant temperatures. It is straightforward to show
that FA�V ,T� then is

FA�V,T� = FH�V�,T� + �U0�V� − U0�V��� . �6�

This is the relationship actually used in these calculations.
One can see that FA�V ,T� reduces to FH�V ,T� at c=0 or at
T=0 K.

From Eq. �5�, the temperature dependence of �i
F �i

�q , j� can be expressed �see the Appendix, Sec. 1 for deri-
vation� as

ai
F = � � ln �i

F

�T



V

= 	i�V����V,T�c� . �7�

�=
V2KT

V�V0K0
, where K0 ,KT are isothermal bulk modulus at 0 K

and finite T, respectively, 	i�V�� is the mode Grüneisen pa-
rameter, ��V ,T� is the quasiharmonic thermal expansivity,
and c is the empirically determined constant. � and ��V ,T�
are always positive, ��1 at low temperatures, and the prod-
uct ���V ,T� increases slightly and linearly with temperature
at high T �see Fig. 1�. 	is are positive in most cases, but can
be negative for harmonic modes that soften under pressure.
Therefore, the temperature dependence of �i

F is proportional
to c	i with a positive and slightly linearly temperature-
dependent prefactor at high temperatures. At low tempera-
tures the prefactor is the thermal expansivity � �see the Ap-
pendix, Sec. 2�. From Eq. �7�, we see that the temperature
dependence of �i

F could be captured even more realistically
by introducing frequency-dependent parameters, cis. This
would entail defining frequency-dependent Vis in Eq. �4� and
rewriting Eq. �6� as a sum over contributions from individual
modes. As is, the single parameter c is a weighted average of
the cis. Since most 	is are positive, and this is true for all
three minerals addressed here, c
0 implies that the pre-
dominant anharmonic effect on frequencies is to increase
them with increasing temperature, while c�0 indicates the
opposite, anharmonic frequencies in average decrease with
increasing temperature. Recall, however, that �i

F are not the
true renormalized frequencies, �i

S, but it might be quite simi-
lar to �i

S �see the Appendix, Sec. 2�.
An approximate relationship between �i

F and �i
S can be

derived by recalling that the anharmonic entropy can be
computed in two different ways, using Eq. �3� or using

SA = �− �FH

�T
�

XF

= �
i
�− kB ln�1 − e−Xi

F
� + Xi

F · kB
e−Xi

F

1 − e−Xi
F

− �
��i

F

�T

e−Xi
F

1 − e−Xi
F� , �8�

where Xi
F=

h�i
F

kBT . Imposing the equality between each term
under the summations in Eqs. �3� and �8� it is possible to
show �see the Appendix, Sec. 2� that

�i
S � �i

F + kBT21 − e−�h�i
F/kBT�

�

� ln �i
F

�T
, �9�

and

ai
S =

� ln �i
S

�T
� �1 + �i�

� ln �i
F

�T
= �1 + �i�ai

F, �10�

where �i=
2kBT

h�i
F −exp�−

h�i
F

kBT ��
2kBT

h�i
F +1�. �i is positive and in-

creases quickly with temperature if kBT�h�i
F and then tends

to 1 when kBT
h�i
F. At T=300 K, most phonon frequen-
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FIG. 1. �Color online� Temperature dependence of � and ��
�see Eqs. �A10� and �A11�� at 0 GPa for MgO, �- and �-Mg2SiO4.
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cies are in the range 1–3 kBT. Correspondingly, their �i’s
are in the range of 0.6–0.9. Therefore �S always increases �if
c
0� or decreases �if c�0� more quickly than �F. The
quantities with obvious temperature dependence in Eq. �10�
are the product �� from Eq. �7� and �i, both increasing
rapidly with temperature at low temperatures and becoming
weakly temperature dependent at high temperatures �see the
Appendix, Sec. 1�. Therefore we expect a noticeable nonlin-
earity in ai

S at low temperatures and a nearly linear behavior
at high temperatures. In fact, this behavior has been observed
in the renormalized frequencies of diamond by Raman scat-
tering experiments.32,33

IV. PREDICTIONS AND COMPARISONS WITH
EXPERIMENTS

MgO �periclase� is an important mineral of Earth’s lower
mantle. Its thermodynamics properties above 2000 K are im-
portant to understanding the state of this region.11 It is also a
very important material in high pressure technology. Because
of its large stability field, it lends itself as a high pressure and
high temperature calibrant. Its equation of state at multi-
Mbars and several thousands of Kelvin is often used as pres-
sure standard in high temperature diamond anvil cell
experiments.34–37 �- and �-Mg2SiO4 �forsterite and wadsley-
ite� are important minerals of Earth’s upper mantle and tran-
sition zone, respectively. The phase transformation between
�- and �-Mg2SiO4 is responsible for the seismic wave ve-

locity discontinuity at 410 km depth. Understanding the na-
ture of this transformation is important for the interpretation
of seismic data and for geodynamic modeling of mantle con-
vection. Recently it was pointed out by Yu et al.29 that the
QHA is in the borderline limit of validity at the conditions in
which this transformation takes place in the mantle, i.e.,
�1700 K and 13.5 GPa. It is therefore desirable to reinves-
tigate this transformation including anharmonic effects in the
free energy of these phases.

A. Anharmonic effects in periclase (MgO)

Periclase has been extensively investigated experimen-
tally and theoretically. Its anharmonic behavior has also been
previously discussed in the literature.24,37,38 Several thermo-
dynamics properties of MgO derived from anharmonic free
energies computed using Eqs. �4�–�6� are shown in Fig. 2 for
various values of c. As expected, at low temperatures, i.e.,
before quasiharmonic results �c=0� start deviating from ex-
perimental values, anharmonic effects are negligible for any
c. Anharmonic effects also become less and less significant
with increasing pressure. At P=100 GPa anharmonicity can
be almost entirely overlooked up to 3000 K. This is consis-
tent with conclusions by Inbar and Cohen7 obtained using the
VIB method. They have showed no significant differences
between MD results and quasiharmonic results at such pres-
sures and temperatures. In general, the correction becomes
increasingly significant with increasing temperature. Our re-
sults show great improvement in the agreement with experi-
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mental thermodynamics data at high temperatures with in-
creasing c. Comparison of predicted and measured thermal
expansivity indicates that the optimum value of c is �0.1.
For this value of c, the predicted thermal expansivity differs
from measured values by less than 1% up to the highest
measured temperature, T=1700 K at 0 GPa. 	th and Cp are
also very well predicted for this value. For c=0.1, 	th is
nearly temperature independent, which is consistent with re-
sults by Inbar and Cohen7 as well. The predicted 	th is also in
good agreement with experimental values.39 For c=0.1, Cp is
also in excellent agreement with experimental data.39 There-
fore, anharmonic effects described by Eq. �5� are very close
to the expected ones. The fact that this anharmonic calcula-
tion builds on quasiharmonic ones that are already in excel-
lent agreement with experiments at low temperatures leads to
better agreement with experiments at high temperatures than
MD simulations alone. Those excellent agreements also en-
sure that the pressure scale of MgO �Ref. 37� based on cur-
rent anharmonic correction has very precise thermal pres-
sure.

From Fig. 2�d� one sees that anharmonic effects on the
adiabatic bulk modulus, KS, at 0 GPa begins to be noticeable
above 1000 K. Predictions of KS of minerals at relevant
mantle conditions are extremely important. Table I shows the
effect of anharmonicity on the properties displayed in Fig. 2,
at some relevant conditions. The property most affected by
anharmonicity is the thermal expansivity, �, followed by 	th
and CP, with KS being the least sensitive. At conditions of
the uppermost lower mantle anharmonicity changes the
quasiharmonic KS by 0.8%. Anharmonicity decreases with
increasing pressure and at core-mantle-boundary conditions
the quasiharmonic predictions for KS should be correct
within −0.09%.

B. Anharmonic effects on the forsterite\wadsleyite transition

Precise knowledge of the phase boundary between forster-
ite and wadsleyite is needed to constrain the thermal struc-
ture and mineralogy of the mantle, particularly of the upper
mantle, transition zone, and the velocity discontinuity of the
seismic wave at depth about 410 km. Given its importance,
this transformation has been extensively investigated by both
experiments and theory.28,40–46 Quasiharmonic calculations
of this phase boundary have consistently shown similar Cla-
peyron slopes �CS�,28,45,46 2.5–2.7 MPa/K. These values are
smaller than the values determined directly from high pres-
sure and temperature crystallographic data41,42 or from semi-
empirical thermodynamics calculations,47 3.6–4.0 MPa/K.
Anharmonic effects have long been recognized in forsterite
as well. Its heat capacity at constant volume, Cv, can exceed
the Dulong-Petit limit between 1400 and 1800 K at 0
GPa.48–51 It has also been recognized that the conditions at
the 410 km discontinuity is at the borderline limit of validity
of the QHA.25,28 Therefore, anharmonicity could be the
source of the discrepancy between quasiharmonic predic-
tions and measured or semiempirical CSs. As far as we
know, the effect of anharmonicity on phase boundary com-
putations has not been discussed so far because of the diffi-
culty in addressing anharmonic free energies. With the cur-

rent approach we are in position to discuss this effect on
phase transformations also. We find that anharmonic effects
are quite different in forsterite and in wadsleyite. Actually
they are opposite and this enhances anharmonic effects on
the phase boundary. Before we discuss this effect we analyze
anharmonicity in forsterite and wadsleyite separately.

1. Forsterite

The most consistent experimental thermodynamics data
for forsterite is Cp. Measurements of other thermodynamics
properties, such as thermal expansivity and Cv, by different
groups differ significantly from each other. Therefore we use
Cp to determine the anharmonic constant c. Figure 3�a�
shows the anharmonic Cp computed for several values of c.
At low temperatures, the QHA result �c=0� is in good agree-
ment with experimental values.49,50,52 But with increasing
temperature, the quasiharmonic Cp increases more slowly
than the experimental values. This behavior is opposite to
that in MgO, where the QHA overestimates Cp �see Fig.
2�c��. It is apparent that the anharmonic free-energy contri-
bution in forsterite requires a negative c. The root-mean-

TABLE I. Thermodynamics properties at relevant mantle con-
ditions before and after inclusion of the anharmonic free-energy
contribution.

MgO at 2000 K and 23 GPa

C
�

�10−5 /K� 	
Cp

�J mol−1 K−1�
KS

�GPa�

0 3.25 1.437 54.07 224.917

0.1 3.04 1.38 52.79 226.822

Change �%� −6.5 −4.0 −2.4 0.8

MgO at 4000 K and 135 GPa

C
�

�10−5 /K� 	
Cp

�J /mol K�
KS

�GPa�

0 1.31 1.202 52.769 598.19

0.1 1.268 1.178 52.025 597.64

Change �%� −3.2 −2.2 −1.4 −0.09

Forsterite at 1700 K and 13.5 GPa

C
�

�10−5 /K� 	
Cp

�J /mol K�
KS

�GPa�

0 2.862 1.078 180.549 164.267

−0.06 2.96 1.102 182.008 163.763

Change �%� 3.5 2.2 0.8 −0.3

Wadsleyite at 1700 K and 13.5 GPa

C
�

�10−5 /K� 	
Cp

�J /mol K�
KS

�GPa�

0 2.674 1.173 180.77 202.105

0.08 2.564 1.141 178.85 203.01693

Change �%� −4.1 −2.7 −1.0 0.45
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square �RMS� of the difference between the calculated and
experimental Cp versus c should be a good indicator the best
value of this constant. This RMS is shown in the inset in Fig.
3�a� versus c. The four curves in this inset represent com-
parisons with different experimental data sets. c should be
between −0.085 and −0.055 based on comparisons with data
by Orr52 and Gillet et al.,50 respectively. c is about −0.006 if
we use simultaneously data from all three experimental
groups.49,50,52

As discussed in Sec. II, c reflects the intrinsic temperature
effect �anharmonicity� on phonon frequencies. c
0 �c�0�
implies anharmonicity increases �decreases� the average pho-
non frequencies at fixed volume. c�0 in forsterite is consis-
tent with Raman measurements by Gillet et al.,50 who indi-
cate that all ai’s for 21 Raman modes are negative. Since the
product �� is approximately 3.2�10−5 /K at 600 K �see Fig.
1�, �i�1, and 0.4�	i�2.1, we obtain ai

S in the range
−0.2 to −0.9�10−5 /K. Considering that experiments were
carried out at constant pressure and the approximations in-
volved in the calculation of ais, these are close to the mea-
sured values of −1 to −2�10−5 /K.50 From this analysis �see
Eqs. �7� and �10�� we expect the vibrational modes with
smaller 	is to have smaller absolute values of ai. This behav-
ior of ais was indeed observed by Gillet et al.50 at constant
pressure. They found that the absolute value of ai’s involving
tetrahedral Si-O bond stretching with smaller 	is

25 are
smaller than for other lattice modes.

Thermal expansion data for forsterite from different
reports51,53–55 are considerably different, especially at high

temperatures �Fig. 3�b��. Our prediction for thermal expan-
sivity � using the optimum c determined from CP, −0.06,
agrees best with data by Matsui and Manghnan55 and by
Suzuki et al.53 These data sets show that the QHA underes-
timates � at high temperatures. Consistently, the constant c
derived from comparisons between predicted � and measure-
ments from these experimental data sets are c=−0.09 �from
Suzuki et al.53� −0.10 �from Matsui and Manghnani55� �see
Fig. 3�b�� which are close to the value of −0.06 determined
from Cp.

Anharmonic corrections with negative c raise Cv beyond
the Dulong-Petit limit at high temperatures. The crossing of
the Dulong-Petit limit is at �2000 K �1800 K� for c
=−0.06 �−0.085�. The experimental crossing temperatures
are 1300 K,50 1400 K,48 and 1500 K.49,51 It appears that
differences in the crossing temperatures are mainly caused
by the difference in thermal expansion data used to calculate
Cv. CP is the measured quantity and CV is obtained from
thermal expansivity �, 	th, and CP. The thermal expansivity
data adopted in these experiments are smaller than ours.
Therefore Cv in these experiments are larger than ours ob-
tained with c=−0.06 and −0.085, even though our calculated
Cp agrees well with the experimental data.

Table I displays the effect of anharmonicity on thermody-
namics properties at relevant mantle conditions, i.e., 1700 K
and 13.5 GPa. Unlike in MgO, anharmonicity increases the
values of thermodynamics properties. As in MgO, the most
affected property is thermal expansivity � followed by 	th,
CP, and KS.
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FIG. 3. �Color online� Thermodynamic properties of forsterite after the anharmonic correction with various parameter c. �a� Isobaric
specific heat Cp at 0 GPa. The inset shows the RMS of the difference between our calculated and experimental Cp from Orr �Ref. 52� �dashed
line�, Anderson et al. �Ref. 49� �dotted line�, Gillet et al. �Ref. 50� �dashed dotted line�, and all above data �solid line�. �b� Thermal expansion
�, �c� specific heat at constant volume CV at 0 GPa, and �d� adiabatic bulk modulus.
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2. Wadsleyite

Figure 4 shows the variation in thermal expansivity �, Cp,
and Cv, with c in wadsleyite. At low temperatures, all prop-
erties agree well with experimental data irrespective of c. At
high temperatures, the nature of anharmonic effects is oppo-
site to that in forsterite and similar to that in MgO. There-
fore, c
0 in wadsleyite. Using � from Suzuki et al.56 to
determine c we get c�0.08 �see Fig. 4�a��. This value for the
anharmonic constant c also improves the temperature depen-
dence of Cp and Cv, even though it is difficult to determine a
reasonable value of c from Cp and Cv due to the absence of
sufficiently high temperature data at low pressure �wadsley-
ite is metastable at 0 GPa�. However, it should be clear from
all these thermodynamics properties of wadsleyite that its
anharmonic constant c should be positive.

Table I also displays the effect of anharmonicity on ther-
modynamics properties of wadsleyite at relevant mantle con-
ditions. Like in MgO, anharmonicity decreases the thermo-
dynamics properties and, again, the most affected property is
thermal expansivity �, followed by 	th, CP, and KS.

3. The Clapeyron slope (CS)

The CS can be directly measured by high temperature and
high pressure experiments �“direct measurements” hence-
forth�, calculated from thermochemical data, or by combin-
ing vibrational spectroscopy data or calculated vibrational
density of states in conjunction with the QHA �“calculations”
henceforth�. As shown in Table II, there are discrepancies
between the CSs of the forsterite-wadsleyite transformation
determined by direct measurements and by calculations.

With the exception of a CS of 2.5 MPa/K determined by the
quench method,43 which has been argued to underestimate
the slope in several phase transformation studies,42 direct
measurements of the phase boundary show steeper phase
boundaries, e.g., CSs such as 3.5 MPa/K,40 3.6 MPa/K,41 and
4.0 MPa/K.42 By contrast, calculations show less steep
slopes: 2.7 MPa/K from quasiharmonic calculations based on
spectroscopic data,45 2.7 MPa/K from quasiharmonic calcu-
lations using interatomic potentials46 and 2.7 MPa/K �2.5
MPa/K� using first-principles LDA �GGA� vibrational den-
sity of states.28 Thermochemical calculations by Akaogi et
al.44 displaying the Dulong-Petit limit57 also show a small
value of the CS, 1.8 MPa/K. This consistency between quasi-
harmonic results seems to indicate that something in the
QHA produces a smaller CS. Therefore the most likely cause
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FIG. 4. �Color online� Thermodynamic properties of wadsleyite with the anharmonic correction. �a� Thermal expansion �. �b� Isobaric
specific heat Cp �Ref. 59�, �c� specific heat at constant volume CV at 0 GPa �Ref. 59�, and �d� adiabatic bulk modulus.

TABLE II. Measured and calculated Clapeyron slopes �MPa/K�
of the thermodynamic boundary between forsterite and wadsleyite.

High pressure experiment 2.5 Katsura and Ito �Ref. 43�
3.5 Suito �Ref. 40�
3.6 Morishma et al. �Ref. 41�
4.0 Katsura et al. �Ref. 42�

QHA calculation 1.8 Akaogi et al. �Ref. 44�
2.7 Price et al. �Ref. 46�;

Chopelas �Ref. 45�;
Yu et al. �Ref. 28�

This study 3.6 Using c=−0.06 �forsterite�
and 0.08 �wadsleyite�

EFFECTIVE SEMIEMPIRICAL ANSATZ FOR COMPUTING… PHYSICAL REVIEW B 79, 104304 �2009�

104304-7



of the discrepancy between the slopes obtained by direct
measurements and by calculations is anharmonic effects not
include in the calculations.

As discussed above, anharmonic effects on forsterite and
wadsleyite are completely different. The anharmonic con-
stant in forsterite, c�, is negative, while in wadsleyite, c�, is
positive. The anharmonic free energy is negative for forster-
ite and positive for wadsleyite �see Figs. 7 and 8�. This leads
to further anharmonic stabilization of forsterite at high tem-
peratures, and to an increase in the CS. As shown in Fig. 5,
the phase boundary changes substantially after anharmonic
corrections. c�=−0.06 and c�=0.08 change the transforma-
tion pressure by �1 GPa at 1700 K and the CS increases
from 2.7 MPa/K �c�=c�=0� to 3.6 MPa/K. Figure 6 shows
the calculated CS at 1700 K versus c� for c�=0 and c�

=0.08. The CS varies quite linearly with c� and c� and can
be expressed as

CS = CS0 + 7.82�c� − c�� , �11�

where CS0 is the slope given by a quasiharmonic calculation
�c�=0�. Therefore, anharmonicity may affect the CS particu-
larly strongly when the CS is positive and the low pressure
phase has a negative anharmonic constant c and the high
pressure phase has positive c, or when the CS is negative and
the low pressure phase has positive c and the high pressure
phase has negative c. In the present case, the discrepancy
between direct measurements and calculations of the CS are
reconciled after inclusion of anharmonicity in the calcula-
tions �see Table II�.

V. ANHARMONIC CONTRIBUTION TO THE
FREE ENERGY

Based on perturbation theory, the lowest order term of the
anharmonic free energy contribution is proportional to T2 at
high temperatures.15 Namely,

Fanh = b�V�T2. �12�

The third- and higher-order correction terms may be neces-
sary in some cases. For MgO, molecular dynamic simula-
tions indicate that, although the third- and fourth-order terms
become non-negligible at very high temperatures, the anhar-
monic free energy still can be well fitted by a quadratic func-
tion in T at high temperatures.20 The anharmonic free-energy
correction based on Eqs. �1�–�6� at various volumes is dis-
played in Fig. 7. Similarly to the correction extracted from
MD simulations,20 the present anharmonic free-energy cor-
rection in MgO can be well fitted by a quadratic function
�Fig. 7�a��. This is also true for forsterite and wadsleyite
�Figs. 7�b� and 7�c��.

Equation �12� is valid only in the high temperature limit
and produces unphysical results at low temperatures, such as
a linear temperature dependence of CV. The present ansatz
produces an appropriate anharmonic free-energy correction
at low temperatures as well. As shown in Fig. 8, the anhar-
monic free-energy contribution in MgO, and in �- and
�-Mg2SiO4 exhibit the typical T4 behavior at low
temperatures.16 The present ansatz therefore reproduces the
correct high and low temperature behaviors of the anhar-
monic contribution to the free energy and improves signifi-
cantly the thermodynamics properties of these phases. This
suggests that it must capture quite well the essence of anhar-
monic effects on the free energy of solids.

VI. CONCLUSION

We introduced a simple and effective semiempirical ap-
proach to compute anharmonic free energy in solids. The
modified temperature-dependent frequencies to be used di-
rectly in the quasiharmonic free-energy formula are ex-
pressed implicitly through a dependence on the quasihar-
monic �temperature dependent� volume. Only one constant,
c, needs to be determined by comparing predicted properties
with experimental data. c=0 reduces the free energy to the
quasiharmonic formula. The approach produces the correct
low and high temperature anharmonic behaviors. The pre-

6 8 10 12 14 16 18 20
500

1000

1500

2000
T

em
pe

ra
tu

re
(K

)

Pressure (GPa)

LDA
GGA

M94

A89

S77

C91

K04

KI89

Forsterite

Wadsleyite

FIG. 5. �Color online� Phase boundary of the forsterite-to-
wadsleyite transformation predicted by LDA �left� and GGA �right�
quasiharmonic calculations �red dashed lines� and including anhar-
monic contributions to the free energy according to Eqs. �1�–�6�
using c�=−0.06 and c�=0.08 �green solid line�. Other boundaries
are from Katasura et al. �Ref. 42�, Katasura and Ito �Ref. 43�, Mor-
ishima et al. �Ref. 41� �M94�, Suito �Ref. 40�, Chopelas �Ref. 45�
�C91�, and Akaogi et al. �Ref. 44� �A89�.

0.00 -0.05 -0.10 -0.15 -0.20 -0.25
2

3

4

5

c
β
=0.08

C
la

pe
yr

on
sl

op
es

(M
P

a/
K

)

c
α

c
β
=0

FIG. 6. The Clapeyron slope at 1700 K versus the anharmonic
constants for forsterite �c�� and wadsleyite �c��. Their relations can
be well described by Eq. �11�.

ZHONGQING WU AND RENATA M. WENTZCOVITCH PHYSICAL REVIEW B 79, 104304 �2009�

104304-8



dicted thermodynamics properties of MgO are in excellent
agreement with experimental data over a wide temperature
range after the anharmonic free-energy correction is in-
cluded. The thermodynamics properties of forsterite and
wadsleyite also improve much with this correction.

According to our analysis, there are two clearly distinct
types of anharmonic effects in crystals: those for which c

0 and those for which c�0. For cases with c�0, such as
forsterite, the QHA underestimates the thermodynamics
properties. Experimentally Cv can exceed the Dulong-Petit
limit in this case. In contrast, for cases with c
0, such as
periclase and wadsleyite, the QHA overestimates the thermo-

dynamics properties and Cv is always below the Dulong-
Petit limit.

Our results also confirm that anharmonic effects may play
an important role in the Earth’s upper mantle and transition
zone. Most striking is the effect of anharmonicity on the
thermodynamics phase boundary between forsterite and
wadsleyite. The effect moves the phase boundary to higher
pressures at higher temperatures and increases the Clapeyron
slope of this transformation. The discrepancy between the
measurements of this slope and those predicted by quasihar-
monic calculations is reconciled after inclusion of anhar-
monic effects. At lower mantle conditions, anharmonic ef-
fects in MgO are noticeable in the uppermost part of the
lower mantle, but decrease rapidly with increasing depth
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�pressure�. For all the minerals investigated, anharmonic ef-
fects are most noticeable in the thermal expansivity, followed
by the thermal Grüneisen parameter, constant pressure spe-
cific heat, and adiabatic and isothermal bulk moduli.
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APPENDIX

1. Derivation of Eq. (7)

The temperature dependence of the phonon frequencies is
usually expressed as

ai = � � ln �i

�T



V

. �A1�

Let ai
F be the anharmonic parameter associated with the

modified frequencies used in the free-energy formula

ai
F = � � ln �i

F

�T



V

, �A2�

where

�q,j
F �V,T� = ��V�� �A3�

and

V� = V	1 − c
�V − V0�

V0

 . �A4�

For short, we adopted V=V�P ,T� and V0=V�P ,0� above.
Then

ai
F = � � ln �i

�V�

� �V�

�T



V

. �A5�

But

� � ln �i

�V�

 = −

	i

V�
�A6a�

and

� �V�

�T



V

= c� V

V0

2� �V0

�T



V

. �A6b�

Although V0 is defined at T=0 K, it is a function of P�V ,T�.
Therefore,

� �V�

�T



V

= c� V

V0

2� �V0

�P

� �P

�T



V

. �A7�

Recall that

� �P

�T



V

= �KT �A8a�

and

1

V0
� �V0

�P

 = −

1

K0
. �A8b�

Therefore

� �V�

�T



V

= − c�
V2

V0

KT

K0
�A9�

and

ai
F = ��V,T��	i�V��c �A10�

with

� =
V2

V�V0

KT

K0
. �A11�

The temperature dependences of � and �� are shown in Fig.
1 for MgO at 0 GPa with c=0.1. Below room temperature, �
is close to 1 and the temperature behavior of ai

F is mainly
determined by �. However, at high temperatures � decreases
with T and cancels the divergent temperature effect in �,
leading to a small and linearly dependent temperature prod-
uct ��. This produces a small temperature dependence in ai

F,
since 	is and c are quite small too ��1 and 10−1–10−2,
respectively�. In MgO, �- and �-Mg2SiO4,

�ai
F

�T �5�10−10 /
K2, −3�10−10 /K2, and 4�10−10 /K2, respectively, above
1000 K. This small value will be exploited in the next sec-
tion.

2. Deviation of the relation between ΩF and ΩS

An approximate relationship between the renormalized
frequencies to be used in the quasiharmonic entropy formula,
�i

S, and the modified frequencies to be used directly in the
quasiharmonic free-energy formula, �i

F, is obtained by writ-
ing

SA = SH�XS� = �
i
�− kB ln�1 − e−Xi

S
� + Xi

SkB
e−Xi

S

1 − e−Xi
S� ,

�A12�

SA = �− �FH

�T
�

XF

= �
i
�− kB ln�1 − e−Xi

F
� + Xi

FkB
e−Xi

F

1 − e−Xi
F

− �
��i

F

�T

e−Xi
F

1 − e−Xi
F� , �A13�

where Xi
S=

��i
S

kBT and Xi
F=

��i
F

kBT . The equivalence of correspond-
ing terms under the summations can be used to derive a
relationship between these frequencies. The last term in Eq.
�A13� is related to the difference 
Xi=Xi

F−Xi
S by
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� �SH

�X
�

Xi
S

Xi = �

��i
F

�T

e−xi
F

1 − e−xi
F . �A14�

We also have

�SH

�X
= − kB

e−X

1 − e−X + kB
e−X

1 − e−X − X · kB
e−X

�1 − e−X�2

= − X · kB
e−X

�1 − e−X�2 . �A15�

Replacing

� �SH

�X



x=xi
S

= � �SH

�X



x=xi
F

− � �2SH

�X2 

x=xi

F
dXi �A16�

in Eq. �A14� we have

� �SH

�X



x=xi
F

Xi − � �2SH

�X2 

x=xi

F

Xi

2 = �
��i

F

�T

e−xi
F

1 − e−xi
F .

�A17�

The second term on the left-hand side �lhs� of Eq. �A17�
is of second order in 
Xi

F and will be neglected. Therefore

� �SH

�X



x=xi
F

Xi = �

��i
F

�T

e−xi
F

1 − e−xi
F . �A18�

Using Eq. �A15� we have

Xi
S = Xi

F +
�

kBXi
F �1 − e−Xi

F
�
��i

F

�T
�A19�

or in terms of frequencies

�i
S = �i

F +
kBT2

�
�1 − e−���i

F/kBT��
� ln �i

F

�T
. �A20�

A relationship between the anharmonic parameters ai
S and ai

F

at high T, where the anharmonic parameters c are non-
negligible can now be derived. From Eq. �A20� we have

d�i
S

dT
=

d�i
F

dT
+ �2kBT

�
�1 − e−�h�i

F/kBT��

− e−�h�i
F/kBT��i

F� � ln �i
F

�T
+ 
 , �A21�

where


 =
kBT2

�
�1 − e−��i

F/kBT�
�ai

F

�T
. �A22�

Now we divide Eq. �A21� by �i
S on the lhs and, since

temperature effects on frequencies are relatively very small,
we assume �i

S��i
F and divide by �i

F on the right-hand side
�rhs�. The last term then is




�i
F =

kBT

��i
F �1 − e−�h�i

F/kBT��T
�ai

F

�T
. �A23�

This term is small compared to the others. For instance, from
Eq. �A10� we have

�ai
F

�T
=

����	ic�
�T

. �A24�

The product �� is linear in T and changes by �10−5 /K
each 3000 K at high T �see Fig. 1�. Therefore

�ai
F

�T
� 3.3 � 10−9	ic/K2. �A25�

Besides
kBT

��i
F �1−eh�i

F/kBT� is always less than 1.

kBT

��i
F �1 − e−�h�i

F/kBT�� =�
0.43 when

kBT

��i
F = 0.5

0.63 when
kBT

��i
F = 1

0.79 when
kBT

��i
F = 2.

�
In contrast, ai

F=
� ln �i

F

�T �4.5�10−5	c /K at high T. There-
fore the term ignored, i.e., Eq. �A23�, is small. For example,
at 1500 K it is only about one tenth of ai

F. Therefore,

ai
S =

� ln �i
S

�T
� �1 + �i�

� ln �i
F

�T
= �1 + �i�ai

F, �A26�

where

�i =
2kBT

��i
F − �1 +

2kBT

��i
F 
e�−���i

F/kBT��. �A27�
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